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 Electroencephalography (EEG) can globally monitor neural activity in millisecond scale, 
which is critical for identifying causality of human brain functions and mechanisms. 
However, to obtain accurate EEG stimulation-response relationship one usually needs to 
repeat multiple-ten times of stimulation-response recording to average out background 
signals of other irreverent brain activities, making real-time monitoring difficult to be 
accomplished. In this study, we explored new approaches which don't require repeats. EEG 
signals were recorded from subjects doing mind tasks including image formation of motor 
functions or emotional subjects and mathematical calculations in mind. Time stamps in 
EEG recording were used to mark task completion time. Signals within 300ms or 1,000ms 
before task completions were analyzed. Using sLoreta 3-D tracking we found that delta-
wave activities were mostly located at frontal lobe or visual cortex, isolated with each other. 
Theta-wave activity tended to rotate around cortex with low spatial correlation. Beta-wave 
behaved like inquiry types of oscillations between any two regions across cortex and was 
consistently correlated with each other over different areas. Alpha-wave activity looked like 
mixture of theta and beta activities. Together with sliding window dynamic connectivity 
method we confirmed beta waves play key roles in linking different brain areas together for 
information inquiry. Theta and low Alpha are more likely playing the role of information 
control, integration, and image formation. With the proposed new method we demonstrated 
reproducible linkages of subject behaviors with 3-D tracing characteristics along the 3 
categories: emotion, math calculation, and motor functions without using event repeats. 
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1. Introduction 

This paper is a full version of 2016 IEEE Signal Processing in 
Medicine and Biology Symposium (Wudenhe, Meng and Choa 
2016) conference abstract. Electroencephalography (EEG) is one 
of the most important neural imaging modalities used for 
monitoring brain activities [1]. Its ability to achieve millisecond 
scale time resolution is critical for obtaining causal relationship. 
However, due to the dynamic nature of brain electrical activity, 
the same stimuli may generate different responses under different 
psychological setting. Interpreting EEG signals, extracting EEG 
biomarkers and correlating them to behaviors have always been 

challenging since the technique was discovered. Event related 
potential (ERP) technique has been one of the successful methods 
that is used to obtain reproducible brain responses to stimuli. 
However, ERP signals are intrinsically weak and are typically 
buried under signals produced by other brain activities. To extract 
ERP signal, one needs to average over many repeats to distinguish 
it from noises and background signals produced by other brain 
activities [2]. Furthermore, brain states are high dimensional and 
complex. Multiple origins or sources can recruit neural activities 
from different paths and influence the same behavior outcome. 
That puts serious restrictions on ERP experiment designs and 
applications for studying event based brain dynamics and causal 
relationship. So, even though ERP is a useful tool, its ability to 
study brain dynamics and applications coverage are limited. To 
eliminate the need of experimental repeats, in this work, we 
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developed EEG 3-D signal tracking methods to monitor brain 
dynamics without event repeat. We also verify obtained results 
with EEG based functional connectivity and statistical studies as 
described in detail in the following. 

Earlier studies have shown that EEG signals may play 
important roles in controlling and initiating brain functions and 
activities [3, 4]. For example, attention usually requires a high 
beta wave to synchronize brain oscillators at different locations 
and alpha wave is used to decouple or disengage attention [4]. 
Furthermore, brain reticular formation area in the brainstem has 
been considered where consciousness and attention control 
initiated [5]. Considering if these descriptions are all correct, we 
shall likely observe some EEG signals initiated from the brain 
stem region when monitoring 3-D EEG signal traces.  

To investigate brain activities in deep brain region, the sources 
of EEG signals need to be localized by solving inverse problems. 
Various techniques have been proposed, such as Low-Resolution 
Electromagnetic Tomography (LORETA) [6], Variable 
Resolution Electromagnetic Tomography (VARETA) [7], Brain 
Electrical Source Analysis (BESA) [8], to establish procedures for 
source localization. However, most of these programs cannot 
guarantee unique solution and are not able to accurately localize 
the EEG sources. One exception is the standardized LORETA 
(sLORETA) method, which improves the source localization 
accuracy by reducing spatial resolution. Pascaual-Marqui 
reviewed different methods of EEG localization [9], in which 
compared multiple mathematical models and concluded that 
extending the good localization properties of 2D minimum norm 
solution to 3D solution spaces with LORETA was the greatest 
challenge in the development of EEG source localization but was 
achieved with LORETA. With the help of LORETA, Herrmann 
and his colleagues investigated error processing of 39 subjects 
engaging the Eriksen flanker task and found significantly higher 
brain electrical activity in medical prefrontal areas for incorrect 
responses and both positive and negative error related 
components represented different aspects of error processing [10]. 
An earlier study from Mientus aimed to address whether 
LORETA was able to detect hypofrontality in schizophrenic 
patients by recording resting status EEG signals from patients and 
normal subjects [11]. For comparison, subjects with schizotypal 
personality and depressive patients were also investigated. 
Significant increase of delta wave activity was detected in the 
patients over the entire cortex, while both schizotypal subjects and 
depressive patients showed much less delta, theta and beta 
activities in the anterior cingulum. Their conclusions obtained 
from LORETA analysis are largely consistent with findings from 
related literatures. Saletu’s group reported application of 
LORETA in diagnosis and pharmacotherapy of depression [12], 
in which LORETA identifies cerebral generators responsible for 
the pathogenesis of depression and for the mode of action of 
antidepressants. LORETA was also used to verify the hypothesis 
that the highest temporal correlations between 3D EEG current 
source densities corresponds to anatomical Modules of high 
synaptic connectivity [13]. These researchers demonstrated that 
EEG temporal correlations between different brain areas were 
related to synaptic density as measured by diffusion spectral 
imaging.  

In this study, we apply sLORETA techniques to obtain 3D EEG 
map, trace them in time and associate these traces with their 
corresponding behaviors. Since many of these vector traces are 
long jumps across over large brain regions in a very short period 
of time, the method provides a big picture about brain dynamics 
with the understanding that sLORETA has its limitation on 
spatial-resolution.  The proposed method is a much simpler 
approach to monitor brain dynamics and function mechanism in 
the sense that no complex experimental arrangement for event 
repeats are required. It opens the door for real-time monitoring of 
brain natural responses under any desired psychological setting 
without worrying about sensory gating effects and how to 
experimentally set up event-repeats [14].   

To verify our conclusions from the monitoring results we have 
also implemented EEG based sliding-window functional 
connectivity analysis. We use the technique to obtain correlation 
statistics and its implications are consistent with 3-D tracing 
monitoring results.  

Correlation between two brain regions is studied by segmenting 
EEG data followed by calculating correlation coefficients 
between two electrode channels. Such schemes basically involve 
breaking down the EEG data into segments followed by extracting 
features (such as correlation in this case) that are henceforth used 
to find patterns in the EEG activity [15, 16, 17]. The segmentation 
approach (as described further in the methods section) has 
recently adopted by function magnetic resonance imaging (fMRI) 
researchers to analyze brain dynamics in terms of functional 
connectivity when subjects are performing tasks [18, 19]. To the 
best of our knowledge, the combined segmentation and sliding 
window analysis has not been done with EEG analysis. We 
describe the implementation methods and experiment details in 
section 2, report their results in section 3, and finally conclude our 
studies in section 4.  

2. Methods and Experiments 

In this section we first describe our experiment design and 
arrangement and then the methods used to analyze the recorded 
data with sLORETA and sliding window techniques. 

2.1. Experimental setup and design 

A 16-channel EEG system was used in this study for EEG 
signal recording. Figure 1 illustrates the channel locations on 
cortex map and A1 and A2 are the reference channels on the left 
and right side brain, respectively. Six subjects participated this 
study (4 males and 2 females, all aged between 18 and 30). We 
designed experiments to obtain EEG recordings when subjects 
were under the following tasks. Subjects were asked (a). to 
visualize images of some parts of their body, for example, the left 
and right hands and feet, nose, lips, etc; (b). to form images in 
their mind of faces of people they love most or they hate most; (c). 
to perform simple mathematical calculations in their mind (like 
15 multiplies 18 or 23 plus 38). When images or calculation 
results were formed in their mind, they time-marked the moment 
by finger touching a static electrode at hand which provided an 
electrical pulse to the EEG recording as a time marker as shown 
in the bottom tract in Figure 2.   

Through the mirror neuron system in human brain, the tasks we 
selected can activate 3 categories of brain activities: emotion, 
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math calculation, and motor function without generating EEG 
artifacts like motor evoked potential (MEP) signals, ...etc. [20]-
[ 23].  

 
Figure: 1 16-channel EEG cortex and channel locations map 

 Raw EEG data was recorded by KT88, and then exported as 
BioSemi format for Matlab with EEGlab toolbox data processing 
followed by converting data into text files for sLORETA brain 
activity maps plotting [6]. Since the EEG system had a sampling 
rate of 100Hz, brain activity maps were recorded every 10ms.  

2.2. Brain activity tracking by sLORETA 

We processed EEG signals 300ms before the time marker since 
it takes that much time for human brain to process information 
and realize task accomplished or decision made. [24]. For 
example, to track dynamic trace of Delta activities during the 
300ms, the filter in sLORETA was firstly set to 0-4Hz low-pass 
filter to extract delta waves. Then in the real-time EEG signal 
display in sLORETA, as shown in Figure 3, the cursor was located 
at the time point 300ms before the time marker (the starting point 
of the pulse generated in original EEG recording, for which the 
time was readable from KT88 EEG signals display). From this 
time point on, one Delta wave activity map was generated for 
every 10ms until the cursor reached the time marker itself. So 
during the analyzed 300ms, there was a series of 31 Delta wave 
activity maps. The same method was applied on Theta, Alpha and 
Beta waves by setting the filter in sLORETA to 4-8Hz, 8-13Hz 
and 13-30Hz, respectively.  

For each sLORETA brain wave activity map, a corresponding 
focus point with the strongest brain activity was found 
(sLORETA provides this function). These focus points were 
connected and plotted in Matlab at a 10ms increments over the 
300ms measured timespan recorded, and viewed considering both 
the X axis, showing left and right sides of the brain, Y axis, 
representing the front and back of the brain, and the Z axis 
representing the top and bottom of the brain. Axis distance range 
being set to -100 to 100 mm.  

2.3. Sliding window analysis 

We also analyzed functional connectivity between brain nodes 
(i.e. 16 EEG channels) during the above described mind 
imagination tasks by using the sliding window approach [18,19] 
for delta, theta, alpha and beta wave activity followed by standard 
deviation analysis as described below.  

a. First, EEG data of 1000ms before the marker onset 
indicating task completion was extracted. This data was 
filtered for delta, theta, alpha and beta wave followed by 
processing with ICA to identify components. (We take 
1000ms data because the sliding window approach 
requires larger sample size for computing meaningful 
results). 

b. Then, data points within a time window of first 100ms for 
one of the wave activity were taken to calculate 
correlation among all pairs of electrodes for that one 
window. Next, the window was then shifted in time by 
10ms of data points that overlaps between the successive 
windows. This resulted in 120 correlation values for each 
of the 91 windows as shown in Figure 4. Here, correlation 
between two electrodes is given by: 

∑ (𝑥𝑥𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦) − 𝑥𝑥(𝑦𝑦𝑖𝑖 − 𝑦𝑦))𝑖𝑖

�(∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2𝑖𝑖 )(∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2𝑖𝑖 )
 

where,  

𝑥𝑥𝑖𝑖 = a time series data point from 1st electrode 
𝑦𝑦𝑖𝑖= a time series data point from 2nd electrode 
𝑥𝑥 = mean of 1st electrode’s time series data 
𝑦𝑦 = mean of 2nd electrode’s time series data 
𝑖𝑖 = 10, 20, 30, … ,100ms    

c. Finally, we then computed standard deviation (σ) of these 
correlation values over the 91 windows for each pair of 
channels to analyze the fluctuation in their connectivity. 
Here, if Ais a matrix that contains correlation values over 
the 91 windows then the standard deviation is defined as: 

S = �
1

𝑁𝑁 − 1
� |𝐴𝐴𝑖𝑖 − µ|2
𝑁𝑁

𝑖𝑖=1

 

where,  

µ is the mean of A and 𝑖𝑖 = 1,2,3,…,(𝑁𝑁 = 91) 

The above is done for all 120 pairs of correlated 
electrodes. Then, the maximum out of the 120 standard 
deviation values was extracted for narrowing down the 
analysis to most erratically correlated nodes. This was 
done for each wave and averaged over all experiment-
tasks for that wave as plotted in Figure 5.   

The above computation and analysis helps in quantification of the 
time-varying behavior in terms of functional connectivity and 
brain dynamics. From the best of our knowledge, the sliding 
window approach has recently adopted for fRMI data analysis to 
describe brain dynamics in slower scale compared with EEG 
signal analysis [18, 19]. Here we applied sliding-window 
techniques to EEG data analysis and extended the technique with 
maximum standard deviation analysis to help interpret EEG data. 
The standard deviation values indicate the degree of fluctuation 
that exists in the functional connectivity i.e. the correlation values. 
We compare the selected maximum standard deviation of all 
waves (Figure 5) as this enables us to test and see the correlation-
consistency for each wave among their most fluctuated nodes that 
are erratically in and out of phase with each other. This is further 
discussed and analyzed in the results and discussion section.
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Figure 2: Example of real-time EEG signal on KT88 (The last channel was added to the EEG system as a time marker, once subjects touched the metal clip, a electrical 
pulse would be generated to mark the time point when images were formed in their mind.) 

 
Figure 3: An example of sLORETA brain activity map (The waves under the 2D and 3D maps are EEG signal on time domain. A 0-4Hz low-pass filter was applied to 
analyze Delta rhythm. The maps are presenting Delta rhythm activities on the time point, where the cursor is located on the time domain signal. The 3D cortex map on 
the left-top corner can be rotated for different perspectives, and the 3 2D maps are the cross section views of xy, yz and zx planes in a 3D Cartesian coordinate system. 
They vary according to the positions of cuts, which are shown as the arrows along the x, y and z axis. By relocating these arrows, the brain activity inside the brain can 
be observed. Red regions represent relatively strong activities and yellow regions represent very strong activities.) 
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Figure 4:  (left) Functional connectivity as correlation matrix between EEG channels from window of 100ms of EEG data. (right) Functional connectivity time series for 
connections between selected pairs of EEG channels based on maximum (O2-T5 pair in blue), medium (FP2-F4 pair in red) and least (FP1-F3 in green) deviation in their 
correlation values. 
 

 
Figure 5:  Mean standard deviation (σ) of correlation values that is obtained by the sliding window approach while the subject is performing imagination tasks. This is 
clustered as most (maximum σ), medium (median σ) and least (minimum σ) fluctuation in phase of the pair of EEG time series channels for each wave rhythm. Overall, 
correlation of EEG channels is the least fluctuating for Alpha and Beta wave in majority of the cases. 
 

3. Results and Discussion 

  From cortex maps plotted by sLORETA we found that the 
Delta oscillations are not only the slowest in frequency, but also 
slowest in the shift or movement of activated regions within the 
300ms before subjects realized image formations in their mind. 
For most of the time in the 300ms, Delta activities tend to arise at 
either frontal lobe or visual cortex. A sudden shift of activation 
between these regions would occur for most cases, and a duration 
of about 150ms to 180ms was observed between two shifts in the 
analyzed period. A group of plots in Figure 6 presents such Delta 
wave activities. We also found that the maximum and medium 
standard deviation of correlation (deduced from sliding window 
approach as described in the methods section) was highest for the 

delta wave. This indicates that the brain regions are not 
consistently correlated and less interactive with each other for the 
delta wave activity (Figure 5).  

Cortex maps plotted by sLORETA also indicate that the Beta 
oscillation activities show up at frontal and visual cortex as well 
for most of the sampled time points, but the spatial shifts can be 
detected every 10ms as shown in Figure 7, which is much faster 
than that of the Delta oscillation. This is to say for one certain 
activity map in the 300ms sampled time series, the excited region 
is different from both 10ms before or after itself for Beta wave. 
Since the sampling rate of the EEG system is 100Hz, the Beta 
activity spatial shifts present a frequency of at least 50Hz,  
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Figure 7:  Performance of Beta rhythm activities (From upside to down side, the plots present Beta rhythm activities 80ms, 70ms, 60ms and 50ms before the subject 
realized the image formation.) 
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(a) 

 
(b) 

which also indicates that the Beta activity’s spatial shift’s speed 
is at least 15 to 18 times faster than that of Delta oscillations. This 
signifies that the activated brain regions during Beta oscillations 
are relatively higher in interactivity with each other than that of 
Delta oscillations. The spatial shift of Beta and Delta oscillations 
observed from these sLORETA plots show back-and-forth 
tracking arrows between frontal lobe and visual cortex, which can 
also be regarded as certain communication between these two 
brain regions, more frequently for beta wave than that for delta 
wave activity. This gets further asserted by our standard deviation 
analysis of functional connectivity computed via sliding window 

approach as the maximum and medium (median) standard 
deviation is the lowest for beta wave activity among all other 
waves (Figure 5). Hence, mostly Beta wave activity related 
neuron oscillations are correlated in the most consistent manner 
than the other waves. This strongly suggests that beta wave 
activity is involved with locking neurons together thereby playing 
a critical utility role for information query.   
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between its activated brain regions whereas Beta wave activity, 
with least deviation, represents most consistently correlated 
activity. Considering the fact that all subjects were asked to 
generate various kinds of images in their mind, we can draw a 
conclusion that prefrontal lobe participate in the processing of 
image formation with visual cortex under both low frequencies 
(Delta oscillations, 0-4Hz) and Beta oscillations (13-30Hz) as 
seen from our sLORETA plots. 

    Cortex maps plotted by sLORETA indicate that Theta 
oscillations do not show a retention at the frontal lobe within the 
300ms before the subjects generate images in their mind. 
However, a detectable annular movement trace can be observed, 
as displayed in Figure 8, which is transmitting along the edge of 
the cortex map from its top view. Considering the sampling rate, 
this trace with Theta wave was continuous during the processing 
of image formation unlike the sudden shifts of activated regions 
as seen with the Delta and Beta oscillations. This circulating 
movement of activated Theta rhythm’s regions would be either 
clockwise or counter clockwise. The cycle of annular movement 
varies for different subjects, as well as for different tasks of image 
formation for the same subject. For most datasets that we recorded 
from the six subjects, these cycles were between 60ms and 150ms 
long in duration.  

    Since all subjects were completing the tasks with their eyes 
closed while EEG signals were being recorded, Alpha waves 
dominated and presented a relatively higher intensity than other 
waves for most of the time, which can be finalized from the time-
frequency plots of EEG signal on O1 channel (left side occipital 
region) in Figure 9(a). For some EEG datasets, the image 
formation in subjects’ mind also excites Mu waves, which share 
the same frequency range of Alpha rhythm, but are detected from 
the motor cortex, rather than occipital region. Figure 9(b) is an 
example of Mu waves on motor cortex. We believe that this 
domination of alpha wave and mu wave is also the reason why we 
see its correlation is overall consistent and not highly erratic 
(Figure 5). Due to the activity of Alpha waves and Mu waves, the 
mirror neural system must be suppressed by the corresponding 
executive network. A global view of Alpha rhythm activity during 
the analyzed 300ms presents an anomalous movement trace. 
However, compared with Theta and Beta rhythm, the 
performance characteristics of Alpha rhythm activity regions 
mostly falls in between them, which means that for some cases, 
an obvious annular movement trace along the cortex edge from a 
top view is observed; for the other cases, oscillations of brain 
activity under Alpha rhythm between frontal lobe and visual 
cortex are present; or even both phenomenon are detected in the 
same dataset at different time period.  

    On an overall level, we observe from connectivity analysis 
(Figure 5) that channel-pairs with consistent correlation, i.e. less 
varied correlation or minimum standard deviation in correlation, 
tend to remain least varied for the entire task for Alpha followed 
by Beta, Delta and then Theta oscillations. Whereas, for pairs of 
channels that are highly erratic in phase with each other, i.e. with 
maximum or medium standard deviation in correlation, tend to be 
least varied for Beta followed by Alpha, Theta and then Delta 

oscillations. The precise nature behind this pattern observation 
remains elusive. It was not clear why Alpha oscillation's pair of 
nodes remain least varied for minimum standard deviation and not 
for maximum and median standard deviation group. Here, we 
quantified task-evoked correlation's variation for each wave and 
we see that overall, Alpha and Beta oscillations tend to be at the 
lower end of variation for correlated pairs. We believe this could 
be for the following reason. Alpha wave is dominating as subject's 
eyes were closed as seen from frequency plots in Figure 9(b) also 
and Beta wave appears to be involved with locking neurons and 
information query as described earlier in Figure 7. 

Individual studies of Delta, Theta, Alpha and Beta oscillations 
during the 300ms period before subjects realized image formation 
in their mind demonstrate totally different performance of these 
rhythms. This also indicates that the rhythms provide different 
functions for the processing of self-contemplating image 
formation with its corresponding executive network. Self-
contemplating image formation involves multiple brain regions’ 
activation, and these activations of brain is dynamic during the 
period from the formation in the mind to the time when subjects 
realize this image formation. The higher frequency the rhythm has, 
the higher the speed of spatial shifts, i.e. movement of activated 
brain regions, was observed. 

Finally, for each EEG dataset, we generated 30 time 
progressive plots representing the 300ms time to trace the highest 
brain wave intensity positions. Figures 10 to 12 show 
accumulated traces of the 30 points in sequence. In Figure 10, the 
activity of forming an image of someone they love, which 
produced heavy activity towards the front cortex of the brain and 
some activity in the visual cortex. This persisted in multiple 
subjects with the Alpha brain wave. Alpha wave displayed both 
characteristics of wrapping around the brain, clockwise or counter 
clockwise motion and persisting activity in visual cortex and 
frontal lobe. With Figure 11, the subject is completing a simple 
mathematical calculation. Note that Beta wave moves at a much 
faster pace, seeing as it is at 13 – 30Hz. Beta displays 
characteristics of rapid movement between the frontal lobe and 
the visual cortex. The activity of a mathematical cognition does 
show a higher concentration in the frontal lobe. And we see a 
much more even distribution between the left and right brain with 
Beta wave, however, Alpha becomes more likely to favor the left 
or right side of the brain. Figure 12 displays a subject’s 
performance while thinking about some part of their body. The 
Theta wave, instead of confining towards a specific region of the 
brain, seems to have a wraparound pattern, either clockwise or 
counterclockwise. Other subjects also show a favoritism of the 
right side of the brain. Delta wave moved at a much slower pace, 
as we had anticipated since it is defined between 0 – 4Hz, 
concentrating a majority of its time by moving between the frontal 
lobe, further towards the positive Y axis, and the visual cortex, 
further back towards the negative Y axis. However, it travels at 
around 45 degree angle to the X and Y axis. The above described 
brainwave activity characteristics reproducibly happened to every 
subject under test. 
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Figure 10: Performance of Alpha, Beta, Delta, and Theta wave across the brain while subject thought about the faces of the people that they loved. 
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Figure 11: Performance of Alpha, Beta, Delta, and Theta wave across the brain finish some simple mathematical calculation, in this case 15*18. 
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Figure 12: Performance of Alpha, Beta, Delta, and Theta wave across the brain while the subject thought about some parts of their body, in this case the left hand.
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4. Conclusions 

    In this work we proposed a new method to monitor dynamic 
activities of brain functions at different frequency band without 
using averaging techniques like even repeats. In our example 
experiments, to associate subject behaviors with 3-D tracing 
characteristics, we found that each wave band had its own 
identifiable behavior that reproducibly generated notable 
characteristics along the 3 categories including emotion, math 
calculation, and motor functions. Our data analysis indicates that 
beta waves play key important roles in linking different brain areas 
together for information inquiry. Theta and low Alpha are more 
likely playing the role of information control, integration, and 
image formation. Conclusions derived from these tracing results 
were further confirmed with sliding window spatial correlation 
analysis. 
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